Posts

Showing posts from December, 2013

Image processing for materials characterization (ICIP 2014, special session)

Image
ICIP 2014 , the IEEE International Conference on Image Processing, will take place in Paris (la Défense, to be honest) during 27-30 October 2014. The twenty special sessions have been announced (see below). One is devoted to the exciting field of Materials science: " Image processing for materials characterization ", with one introductory and five invited papers . ICIP 2014 Special Session " Image processing for materials characterization " CLICK THE PICTURE FOR THE DEDICATED PAGE  The deadline for paper submission is 14 February 2014. We encourage interested authors to submit as many papers as possible around this topic ( ICIP 2014 submission information ), and to warn one the special session organizers. Beware: the existence of the special session on " Image processing for materials characterization " does not grant , by no mean, acceptance or even higher odds to the main conference tracks. Maxime Moreaud (@IFPEN dot fr, with a d

Géométrie espace-temps

Image
Une jolie série historique sur la géométrisation progressive du monde observé, par les philosophes et les scientifiques, en série d'épisodes de 10 minutes. La géométrie de l'espace et du temps  1 Introduction : physique et géométrie, naissance de l'esprit scientifique (de la narration mythique à l'explication). La géométrie de l'espace et du temps  2 Une vision du monde totalement géométrisée. L'harmonie et la symétrie, le cosmos, solides de Platon ou polyèdres réguliers, mis en relations avec les éléments, précurseurs des groupes de symétries. "Planète" veut dire "voyageur". Le dodécaèdre, plus proche de la sphère en symétrie, sert à représenter un cinquième élément. La géométrie de l'espace et du temps  3 La géométrie de l'espace et du temps  4 La géométrie de l'espace et du temps  5 La géométrie de l'espace et du temps  6 La géometrie de l'espace et du temps  7 La géometrie de l&

A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal

Image
A year ago we talked about a technique for Adaptive multiple subtraction with wavelet-based complex unary Wiener filters . The field of application is seismic signal processing . The fast and simple design was heuristic ( helping discovery, stimulating interest as a means of furthering investigation. based on experimentation), based on an appropriate combination of "a sparsifying transform" and a closed-form one-tap, sliding-window adaptive filter. To make it more pragmatic (based on observation and real-world models), an alternative approach uses proximal algorithms to incorporate sparsity priors, either on data in redundant frame transforms and in the short-support filter design. Here is the preprint: A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal and the version published by IEEE Transactions on Signal Processing . Unveiling meaningful geophysical information from seismic data requires

Multirate structures, multiscale decompositions: two years after

Image
Signal Processing Two years ago, in December 2011, a special issue of Signal Processing was published on the theme of Advances in Multirate Filter Bank Structures and Multiscale Representations . Eleven papers, ranging from 1D or 2D data, spanning topics from filter frame design to compression, browsing applications from audio to medical imaging. This issue was very rich in interesting papers , thanks to the authors and reviewers. Can one say a little more? Of course, bibliometrics or scientometrics generate a lot of debates. Generally, such indicators do not mean anything absolute, they may only serve as a ground for discussion. Let us just compare the figures with the journal statistics: Signal Processing has a two-year Impact Factor on 1.851 (2012). Special issue citation data is tabulated in the following array: Citation sources (2013/12/14) Elsevier ISI-Thomson Google Title Scopus WoS Scholar A Panorama on Multiscale Geometric Representations, Int