August 28, 2015

Hugo Steinhaus, or K-means clustering in French

Kernel clustering
[Modern transcription of the Hugo Steinhaus paper in 1956 (in French), at the source of k-means clustering algorithms, published first in a french-written post]

Data clustering or clustering analysis belongs to statistical data analysis methods. It aims at forming groups of objects that are similar in some way. Those groups are named clusters. The word cluster is related to clot, for thick mass of coagulated liquid or of material stuck together

The whole set of objects contains heterogeneous data, that ought to be grouped into subsets possessing a greater inner homogeneity. Such methods rely on similarity criteria or proximity measures. They are related to classification, machine learning, segmentation, pattern recognition, and have applications ranging from image processing to bioinformatics.
One of the most popular clustering method is known as K-means (k-moyennes in French). with a variation called dynamic clustering (beautifully called nuées dynamiques in French, for an application in bilogy: Kinetic transcriptome analysis reveals an essentially intact induction system in a cellulase hyper-producer Trichoderma reesei strain, Dante Poggi et al., Biotechnology and Biofuels, 2014).

An history of K-means can be found in Data Clustering: 50 Years Beyond K-Means, Anil K. Jain, Pattern recognition letters, 2010. Other historic bits can be found in Origins and extensions of the k-means algorithm in cluster analysis, Hans-Hermann Bock, Electronic Journ@l for History of Probability and Statistics, 2008. This algorithm is deeply linked to Lloyd-Max algorithm, developed by Lloyd in  1957, and rediscovered by Max three after after. It is useful for optimal scalar quantifier design.

Sur la division des corps matériels en parties (pdf)

The K-means technique is a little older. It was published in French by Hugo Steinhaus in 1956 in the Bulletin de l’Académie Polonaise des Sciences (Bulletin of the Polish Academy of Sciences). Hugo Steinhaus (1887-1972) is a Polish mathematician, sometimes known as the discover of Stefan Banach. He contributed to numerous branches of mathematics, and considered a early founder of probability theory.

He also contributed to applied mathematics, working jointly with engineers, biologists, physician, economists, geologists, and "even lawyers". Lacking of trustworthy information during World War II, he invented a statistical tool to estimate German losses, using necrologic news from German soldiers on the front. He notably used the mention that the soldier killed was the first, second or third child from a family. He thus is a precursor of data science.
This paper is called "Sur la division des corps matériels en parties" (On the division of material bodies into parts). The first to explicitely  formulate in finite dimension the principle of k-mean clustering. It is much more constructive that the Banach-Tarski paradoxal theorem which delas with cutting a ball into two different balls, doubling in volume. This paper is pleasant to read, and evokes practical uses from type classification in anthropology to industrial object normalization.

Being in French, in a journal whose archives cannot be accessed easily, it has not been read as much as it deserved. . Here is it transduced by Maciej Denkowski, transmitted by Jérôme Bolte, and transcribed in LaTeX by  myself, with some effort to preserve the original typesetting and composition.

@Article{Steinhaus_H_1956_j-bull-acad-polon-sci_division_cmp-k-means,
  Title                    = {Sur la division des corps mat\'eriels en parties},
  Author                   = {Steinhaus, H.},
 File                     = {Steinhaus_H_1956_j-bull-acad-polon-sci_division_cmp-k-means.pdf:Steinhaus_H_1956_j-bull-acad-polon-sci_division_cmp-k-means:PDF},
  Journal                  = {Bulletin de l’Acad\'emie Polonaise des Sciences},
  Number                   = {12},
  Pages                    = {801--804},
  Volume                   = {Cl. {III} --- Vol. {IV}},
  Year                     = {1956},

  Owner                    = {duvall},
  Timestamp                = {2015.07.07.15.44}
}








Hugo Steinhaus : classification par k-moyennes, nuées dynamiques

Partitionnement à noyau
[Mise à disposition de l'article de Hugo Steinhaus de 1956, à l'origine de l'algorithme de partitionnement par les k-moyennes (available in English)]

Le partitionnement des données (data clustering ou clustering analysis) est une méthode "statistique" d'analyse de données visant à regrouper, dans un ensemble de données hétérogènes, des sous-ensembles de ces données en amas ou paquets plus homogènes. Chaque sous-ensemble doit ainsi présenter des caractéristiques similaires, quantifiée par des critères de similarité ou différentes mesures de proximité. Ces techniques appartiennent aux familles de classification, d'apprentissage automatique ou de segmentation, employées dans un nombre phénoménal d'applications, du traitement d'image à la bio-informatique.

L'une des méthodes de partitionnement ou d’agrégation les plus populaires est celle des k-moyennes (ou K-means), un problème d'optimisation combinatoire dont une version porte le joli nom de nuées dynamiques (pour une application qui m'intéresse : Kinetic transcriptome analysis reveals an essentially intact induction system in a cellulase hyper-producer Trichoderma reesei strain, Dante Poggi et al., Biotechnology and Biofuels, 2014).

Une histoire des k-moyennes est disponible dans Data Clustering: 50 Years Beyond K-Means, Anil K. Jain, Pattern recognition letters, 2010. Un autre point de vue est dans Origins and extensions of the k-means algorithm in cluster analysis, Hans-Hermann Bock, Journ@l Electronique d'Histoire des Probabilités et de la Statistique. Cet algorithme est profondément relié à l'algorithme dit de Lloyd-Max, développé par Lloyd en 1957, et redécouvert par Max trois ans après. Il permet notamment de construire un quantificateur scalaire optimal. 

Sur la division des corps matériels en parties (pdf)
Cette technique a cependant une source légèrement antérieure, publiée en français par Hugo Steinhaus en 1956 dans le Bulletin de l’Académie Polonaise des Sciences. Hugo Steinhaus (1887-1972) est un mathématicien polonais qui a contribué à de nombreuses branches des mathématiques, et est considéré comme l’un des précurseurs de la théorie des probabilités. Il a également œuvré en mathématiques appliquées, avec des collaborations avec des ingénieurs, géologues, économistes, des physiciens, biologistes. En manque d’informations fiables sur le déroulement de la 2e guerre mondiale, il « invente » un outil statistique pour estimer les pertes allemandes, en utilisant les annonces sporadiques des décès, partant d’un calcul de la fréquence relative d’annonces nécrologiques de soldats décédés mentionnant s’ils sont les 1er, 2e, 3e etc. fils d’une famille. Il est ainsi un précurseur de la science des données.

Cet article s'intitule "Sur la division des corps matériels en parties", et est le premier formulant de manière explicite, en dimension finie, le problème de partitionnement par les k-moyennes. Il est donc plus constructif que le théorème paradoxal de Banach-Tarski qui s'intéresse à la découpe d'une boule en deux boules de volume total double. Son écriture est plaisante, visant un usage pratique allant de la classification des types en anthropologie à la normalisation des objets industriels. 

Étant en langue française, dans une revue aux archives peu disponibles en ligne, cet article n'a pas eu la lecture qu'il méritait. Le voici transduit par Maciej Denkowski, transmis par Jérôme Bolte, et transcrit en LaTeX par votre serviteur, avec un effort majeur pour en conserver la pagination originale.

@Article{Steinhaus_H_1956_j-bull-acad-polon-sci_division_cmp-k-means,
  Title                    = {Sur la division des corps mat\'eriels en parties},
  Author                   = {Steinhaus, H.},
 File                     = {Steinhaus_H_1956_j-bull-acad-polon-sci_division_cmp-k-means.pdf:Steinhaus_H_1956_j-bull-acad-polon-sci_division_cmp-k-means:PDF},
  Journal                  = {Bulletin de l’Acad\'emie Polonaise des Sciences},
  Number                   = {12},
  Pages                    = {801--804},
  Volume                   = {Cl. {III} --- Vol. {IV}},
  Year                     = {1956},

  Owner                    = {duvall},
  Timestamp                = {2015.07.07.15.44}
}

Une version anglophone de ce billet s'intitule : Hugo Steinhaus, or K-means clustering in French.





AIchronIA: time with artificial intelligence and space (aitopia, utopia)

 As artificial intelligence invades all domains of so-called "reality", remember that utopia was a antecedent to science-fiction. ...