June 25, 2010

Minotaure, tu dois finir ta thèse (Simon Berjeaut), paroles

Simon Berjeaut était l'invité de Grantanfi (doctorants, l'avenir dure longtemps) sur France Culture le mercredi 21/11/2012.

Simon Berjeaut est l'auteur de la chanson du Minotaure, ou "Tu dois finir ta thèse", message d'espoir en chanson pour les doctorants et doctorantes en mal de manuscrit, dont je vous avais parlé il y a deux mois, et qu'Igor Carron avait proposé de rendre viral sur YouTube. La vidéo se télécharge . Et les paroles sont un peu plus bas... En passant, un coucou à mes doctorantes et doctorants en cours et diplomé.e.s : Caroline Chaux, Jérôme Gauthier, Mai Quyen-Pham, Aurélie Pirayre, Arthur Marmin, Lauriane Bouard, Sarah Fajon, Surabhi Jagtap, Louna Al Souki, ainsi que Colombe Vendeuvre et Cyril Faure.






Maurits Cornelis Escher : Angels and Demons (1942)
C'était à l'époque cendreuse de Eyjafjallajökull, et cette chanson évoque le piton de la Fournaise. Pourquoi le Minotaure ? Pour Thésée, l'homme perdu dans le labyrinthe que seul un fil ténu rappelle vers l'issue, une métaphore taurine illustrative du parcours de rédigeant de chaque doctorant. Thêseús comme Odysseus tant la parcours semble voyage sans fin, mais borné, comme l'univers Lorentzien de M. C. Escher de "anges et démons", ou disque hyperbolique de Poncaré. Mais aussi l'évocation de cette période surréaliste, par Minotaure, revue d'avant-guerre (la seconde) qui a fait diffuser des Roberto Matta, Alberto Giacometti, Hans Bellmer, Victor Brauner ou Tristan Tzara. Les deux derniers me rappelant un voyage en Roumanie. Roumanie + T = Minotaure (anagramme faible).

Les paroles ? Les paroles !

Victor Brauner, Hypergenese de la Reapparition (1932)
Où est ton regard de braise
Et tes airs conquérants
Tes épaules en trapèze
Et ta belle énergie
Tu as le regard qui biaise
De tous les doctorants
Et tu deviens obèse
Pris dans ta léthargie

Tu dois finir ta thèse
Tu dois finir ta thèse

Ton esprit de synthèse
Ta volonté de fer
Et ton désir d’ascèse
Se sont-ils envolés ?
Au pied de la falaise
Tu ne sais plus comment faire
Ta volonté de glaise
Il faut la remodeler

Tu dois finir ta thèse
Tu dois finir ta thèse

Ce soir c'est reparti
Tu t'enfermes chez toi
Tu vas finir ta thèse
Ta décision est ferme
Ou au moins une partie
Ou bien le petit trois
Ou bien la parenthèse
Qu'il faut que je referme

Tu dois finir ta thèse

Tu vas finir demain
Tu dois finir le seize
Tu vas finir en juin
Bon, tu reprends une 16
Tu fumes un dernier joint
Et soudain tu t'apaises
Et doucement tu rejoins
Le mouvement des sans-thèse (fois trois)

Comme le dit Marie-Thérèse
Ta voisine martiniquaise
C'est comme le piton de la fournaise
Ça prendra comme une mayonnaise
C'est des foutaises
Tu vas finir ta thèse

Comme le dit Madame Hernandes
Dans sa sagesse toute portuguaise
Si aujourd'hui "nada se fez" (rien ne se fait)
"vai ficar para outra vez" (ça sera pour une autre fois)

C'est des fadaises !
Tu vas finir ta thèse

Tu aimerais trouver un max de pèze
Caché dans une attaché-case
Tu partirais à Saint-Tropez
Tu irais faire du steeple-chase

Tu ferais pas ta thèse
Tu ferais plus du tout ta thèse

Même si la vie te pèse
Écarte l'hypothèse
De finir ta thèse
Au père Lachaise
Enfile tes charentaises
Rassieds-toi sur ta chaise
Pas besoin de chanter la Marseillaise
Mets-toi à l'aise
Tu vas finir ta thèse

Et ne vous en déplaise
Et tant pis si j'ai tord
Mais il me semble plus aisé
De poursuivre une thèse
Plutôt qu'un Minotaure
Tout le monde peut pas être Thésée
Tout le monde peut pas être Thésée
Thésée, Thésée

Mais taisez-vous
Punaise !
[Quelle prise de thèse ?]

Tu vas finir ta thèse...
Tu vas finir ta thèse !

C'est infinissable
... Mais tu vas la finir
C'est insoutenable
... Mais tu vas la soutenir

Tu vas la finir
Tu vas la soutenir
Tu vas la publier, qui sait ?

Tu vas finir ta thèse
Tu vas finir ta thèse

June 10, 2010

Information overload - And no more trivia, fool!

[Update 2014/05/20 with Ann Blair publications] There is a recent concern about information overload. Or is there? According to the following independent sources:
the problem is not so recent. Ann Blair already informed us in 2003 that there were Reading Strategies for Coping with Information Overload ca. 1550-1700:
The "multitude of books" was a subject of wonder and anxiety for authors who reflected on the scholarly condition in the sixteenth through the eighteenth centuries. In the preface to his massive project of cataloguing all known books in the Bibliotheca univeralis (1545) Conrad Gesner complained of that "confusing and harmful abundance of books," a problem which he called on kings and princes and the learned to solve.  By 1685 the situation seemed absolutely dire to Adrien Baillet, who warned:
"We have reason to fear that the multitude of books which grows every day in a prodigious fashion will make the following centuries fall into a state as barbarous as that of the centuries that followed the fall of the Roman Empire. Unless we try to prevent this danger by separating those books which we must throw out or leave in oblivion from those which one should save and within the latter between what is useful and what is not."
In this way Baillet claimed to have warded off barbarity itself with his collection of judgments on the learned in his nine-volume (and still only half-completed) Jugemens des sçavans
The "information overload" or "scholar big data" is push further in: Too Much to Know. Managing Scholarly Information before the Modern Age (2010):
The flood of information brought to us by advancing technology is often accompanied by a distressing sense of “information overload,” yet this experience is not unique to modern times. In fact, says Ann M. Blair in this intriguing book, the invention of the printing press and the ensuing abundance of books provoked sixteenth- and seventeenth-century European scholars to register complaints very similar to our own. Blair examines methods of information management in ancient and medieval Europe as well as the Islamic world and China, then focuses particular attention on the organization, composition, and reception of Latin reference books in print in early modern Europe. She explores in detail the sophisticated and sometimes idiosyncratic techniques that scholars and readers developed in an era of new technology and exploding information.
Listen to 23' of Clay Shirky at Web 2.0 Expo NY, 19 September 2008, where you learn, along  the movie narration flood, "It's Not Information Overload. It's Filter Failure":




The "multitude of books" was a subject of wonder and anxiety for authors who reflected on the scholarly condition in the sixteenth through the eighteenth centuries. In the preface to his massive project of cataloguing all known books in the Bibliotheca univeralis (1545) Conrad Gesner complained of that "confusing and harmful abundance of books," a problem which he called on kings and princes and the learned to solve.1 By 1685 the situation seemed absolutely dire to Adrien Baillet, who warned [...]

So apparently, the information overload problem is no novelty. Looks like information is riding an exponential wave, as in the standard chart (left), whose derivative is just about an exponential. Reminds me of the following joke: $1$ and $e^x$ sit in an old favorite room of a restaurant. Waiting for food arrival - noontime. Suddenly, $1$ gets terrified and cry at $e^x$: "hide me, hide me, here enters a derivative operator!". Proud and fierce,  $e^x$ hides the constant behind her back, and defies the operator: "i am $e^x$, i don't fear you". "Sure!" the operator replies, "i am $\frac{\partial}{\partial y}$". 
As Clay Shirky says, "If you have a problem for a long time, it's not a problem... Maybe it's a fact!" (IMHO probably emphasized by the Internet/media mode of "content creation", more than often a mere duplication (pure redundancy) or basic distorsion (jamming) of pre-existing content, with reduced added value), to fill the media tubes and pipes (forlorn media ovation). Since more and more people write, blog, tweet and buzz about IO, further adding low valued load. IO might just be neither a true problem nor a false one. René Thom (in Paraboles et Catastrophes, Champs Flammarion, p. 127) reminds us that "Ce qui limite le vrai n’est pas le faux, mais l’insignifiant", approximately translated to "What limits truth, it is not forgery but trifle/insignificance" (quote courtesy of Olivier Rey, whose Itinéraire de l'égarement deserves close reading, admiration of no lover). IO as an inane vomit flood roar (sounds like a death metal song title, but only an anagram).

Yet still assuming that "more data = better decisions", some argue that the "real problem is the lack of efficient strategies to index, summarize, filter, cross-reference and archive information", or propose "A Framework for Information Overload Research in Organizations Insights from Organization Science, Accounting, Marketing, MIS, and Related Disciplines" (Eppler, Mengis, 2003). But more insignificant data may as well lead to zero decisions, as gaussian disturbances may vanish as the square root on the number of observations. Second thought, not so much with rounding, see Statistical Analysis for Rounding Data (Zhidong Bai, 2006). The current trend in signal or image processing is generally similar: acquire more data, at higher frequency, with more precision (watch out, formation on evil road), hoping signal processing, statistics and data mining will cope with the flood and deliver precious information. An extreme example arises in seismic processing, where petabytes of data ("but also storage systems that can handle petabytes of data daily") are gathered. Yet, due to the computational burden and memory footprint, the relative time spent on "fine processing" with respect to data reading, loading, handling, sorting seems tiny.

Thank to the availability of low cost sensors and band-width, the data overload plague is spreading. More and more data, less and less time to process it properly, massive low-quality batch filtering are favored. Signal and image processing enter the dark area of weak signals and information overlook. I pray everyday (no variation of me, Lord) for my colleagues to tell me: next step, we are going to acquire much less signals (and favor no more dilation of disk space), to spend the remaining time on their processing.

AIchronIA: time with artificial intelligence and space (aitopia, utopia)

 As artificial intelligence invades all domains of so-called "reality", remember that utopia was a antecedent to science-fiction. ...