May 16, 2013

Gas chromatography and 2D-gas chromatography for petroleum industry: The race for selectivity

Almost a follow-up to Signal Processing for Chemical Sensing: ICASSP 2013 Special session: the book Gas chromatography and 2D-gas chromatography for petroleum industry: The race for selectivity, edited by Fabrice Bertoncini, Marion Courtiade-Tholance, Didier Thiébaut (2013, éditions Technip) is out. Our contribution lies in Chapter 3: "Data processing applied to GCxGC. Applications to the petroleum industry.".
Detailed knowledge of petroleum products at molecular scale has always been essential to understand the mechanisms leading to their formation, to design thermodynamic and kinetic models employed in the refining processes and to predict their physical properties. In view of the complexity of petroleum products, very significant research efforts have been made over the past 15 years for improving relevant analytical techniques, especially in the field of Gas Chromatography in order to improve its separation power. The advent of comprehensive Two-dimensional Gas Chromatography (GC×GC) at the end of 1990's constitutes a true revolution allowing an unprecedented insight into very complex mixture at the molecular level.
This book aims at providing a complete review of the implementation of Gas Chromatography in the field of oil industry, with an important focus on GC×GC and related multidimensional systems. It is therefore organised into 8 chapters dealing with fundamental and experimental aspects as well as data processing challenges. Recent progress in the development of these chromatographic systems are discussed according to various applications: detailed molecular analysis of hydrocarbons, speciation of hetero-element, global properties calculation based on chromatographic data and simulated distillation. Specialists from IFP Energies nouvelles, CNRS and major companies leading important research in this field have contributed, reporting a synthesis of the knowledge acquired from research these last 15 years.
Thus, this book will be useful for anyone involved in the separation of oil and derivatives: the student starting a research project, the academic researcher and the refinery engineer willing to deepen their knowledge on advanced multidimensional Gas Chromatography, as well as molecular analysis of petroleum products.

 Contents: 1. Molecular analysis for petroleum products: challenges and future needs. 2. GCxGC: a disruptive technique. 3. Data processing applied to GCxGC. Applications to the petroleum industry. 4. Coupled systems with a CG or GCxGC dimension. 5. Detailed analysis of hydrocarbons. 6. Calculating properties from chromatographic data. 7. Speciation of heteroelements. 8. Simulated distillation. Index.
Related publications:  

Comprehensive Two-Dimensional Gas Chromatography for Detailed Characterisation of Petroleum Products ,Colombe Vendeuvre, R. Ruiz-Guerrero, Fabrice Bertoncini, Laurent Duval, Didier Thiébaut, Oil and Gas Science and Technology - Revue de l'IFP, Special issue on "Recent Advances in the Analysis of Catalysts and Petroleum Products", 2007, Vol. 62, n°01, p. 043-055
Comprehensive two-dimensional gas chromatography (GC xGC or GC2D) is a major advance for the detailed characterisation of petroleum products. This technique is based on two orthogonal dimensions of separation achieved by two chromatographic capillary columns of different chemistries and selectivities. High-frequency sampling between the two columns is achieved by a modulator, ensuring that the whole sample is transferred and analysed continuously in both separations. Thus, the peak capacity and the resoluting power dramatically increase. Besides, highly structured 2D chromatograms are obtained upon the volatility and the polarity of the solute to provide more accurate molecular identification of hydrocarbons. In this paper fundamental and practical considerations for implementation of GCxGC are reviewed. Selected applications obtained using a prototype of a GCxGC chromatograph developed in-house highlight the potential of the technique for molecular characterisation of middle distillates, sulphur speciation in diesel and analysis of effluents frompetrochemical processes
Characterization of middle-distillates by comprehensive two-dimensional gas chromatography (GCxGC): a powerful alternative for performing various standard analysis of middle distillates (pdf), Colombe Vendeuvre, Rosario Ruiz-Guerrero, Fabrice Bertoncini, Laurent Duval, Didier Thiébaut, Marie-Claire Hennion, Journal of Chromatography A, 1086 (2005) p. 21-28
The detailed characterisation of middle distillates is essential for a better understanding of reactions involved in refining process. Owing to higher resolution power and enhanced sensitivity, comprehensive two-dimensional gas chromatography (GCxGC) is a powerful tool for improving characterisation of petroleum samples. The aim of this paper is to compare GCxGC and various ASTM methods – gas chromatography (GC), liquid chromatography (LC) and mass spectrometry (MS) – for group type separation and detailed hydrocarbon analysis. Best features of GCxGC are demonstrated and compared to these techniques in terms of cost, time consumption and accuracy. In particular, a new approach of simulated distillation (SimDis-GCxGC) is proposed: compared to the standard method ASTM D2887 it gives unequal information for better understanding of conversion process.
Comparison of conventional gas chromatography and comprehensive two-dimensional gas chromatography for the detailed analysis of petrochemical samples (pdf), Colombe Vendeuvre, Fabrice Bertoncini, Laurent Duval, Jean-Luc Duplan, Didier Thiébaut, Marie-Claire Hennion, Journal of Chromatography A, 1056 (2004) p. 155-162
Comprehensive two-dimensional gas chromatography (GCxGC) has been investigated for the characterization of high valuable petrochemical samples from dehydrogenation of n-paraffins, Fischer–Tropsch and oligomerization processes. GCxGC separations, performed using a dual-jets CO2 modulator, were optimized using a test mixture representative of the hydrocarbons found in petrochemicals. For complex samples, a comparison of GCxGC qualitative and quantitative results with conventional gas chromatography (1D-GC) has demonstrated an improved resolution power of major importance for the processes: the group type separation has permitted the detection of aromatic compounds in the products from dehydrogenation of n-paraffins and from oligomerization, and the separation of alcohols from other hydrocarbons in Fischer–Tropsch products.

No comments:

Post a Comment

AIchronIA: time with artificial intelligence and space (aitopia, utopia)

 As artificial intelligence invades all domains of so-called "reality", remember that utopia was a antecedent to science-fiction. ...